首页> 外文OA文献 >Hydromechanical Aspects of CO2 Breakthrough into Clay-rich Caprock
【2h】

Hydromechanical Aspects of CO2 Breakthrough into Clay-rich Caprock

机译:CO2突破进入富含粘土的盖层的流体力学方面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Caprock formations are intended to prevent upwards carbon dioxide (CO2) migration to the surface during CO2 geological storage. Caprock interaction with CO2, as well as its potential consequences, requires to be predicted, and thus, need to be studied experimentally. Laboratory investigations of caprock behavior are complex due to its low permeability, and the scarcity of experimental studies involving high-pressure CO2 injection into caprock representatives puts this difficulty into manifest. In this study, we perform laboratory experiments in an oedometric cell on intact and remolded Opalinus clay (Jurassic shale), evaluating the breakthrough pressure and permeability for liquid and supercritical CO2. Intact and remolded shale specimens present intrinsic permeabilities of 10-21 m2 to 10-20 m2, respectively. Applied axial stress ranges from 27 MPa to 42 MPa and the pressure and temperature conditions are representative of a caprock at a depth of 800 m. We found that the microstructure of the caprock has a great effect on the material properties. The intrinsic permeability of a more tight material (intact Opalinus clay) is around two times lower than that of remolded shale, which has a more open microstructure. Additionally, the intact rock becomes 30 times less permeable to CO2 than the remolded shale, which implies that the CO2 relative permeability is 15 times smaller for intact rock than for remolded shale. On the other hand, CO2 breakthrough pressure for the tighter material is almost three times lower than for the more permeable remolded shale. Breakthrough pressure of the remolded shale ranges from 3.9 MPa to 5.0 MPa for liquid CO2 and from 2.8 MPa to 4.6 MPa for supercritical CO2. For the intact shale, breakthrough pressure is 0.9 MPa for liquid CO2 and 1.6 MPa for supercritical CO2. Thus, the breakthrough pressure cannot be correlated with the intrinsic permeability of the caprock. © 2017 The Authors.
机译:盖层构造是为了防止二氧化碳地质存储过程中向上的二氧化碳(CO2)迁移到地表。盖层与二氧化碳的相互作用及其潜在后果需要进行预测,因此需要进行实验研究。由于盖层特性的渗透率低,因此实验室研究非常复杂,而涉及向盖层代表中注入高压CO2的实验研究的稀缺性却使这一困难得以体现。在这项研究中,我们在完整的和重塑的蛋白石粘土(侏罗纪页岩)的测渗池中进行实验室实验,评估液体和超临界CO2的突破压力和渗透率。完整和重塑的页岩样品的固有渗透率分别为10-21平方米至10-20平方米。施加的轴向应力范围为27 MPa至42 MPa,压力和温度条件代表800 m深度的盖层。我们发现盖层的微观结构对材料性能有很大的影响。较密实的材料(完整的蛋白石粘土)的固有渗透率比重塑页岩的固有渗透率低约两倍,后者具有更开放的微观结构。此外,完整岩石的二氧化碳渗透性比重塑页岩要低30倍,这意味着完整岩石的CO2相对渗透率比重塑页岩要小15倍。另一方面,致密材料的CO2突破压力几乎比渗透性更高的重塑页岩低三倍。对于液态二氧化碳,重塑的页岩的突破压力范围为3.9 MPa至5.0 MPa,对于超临界二氧化碳,其突破压力为2.8 MPa至4.6 MPa。对于完整的页岩,液态CO2的突破压力为0.9 MPa,超临界CO2的突破压力为1.6 MPa。因此,突破压力不能与盖层的固有渗透率相关。 ©2017作者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号